Measurement: Calculate Perimeter

Aim

Measure the perimeter of simple 2-D shapes.

To calculate the perimeter of simple shapes.

```
Success Criteria
I can calculate the perimeter of shapes where the sides are not all in the same unit of measurement.
I can use the properties of squares to calculate perimeter.
I can use the properties of rectangles to calculate perimeter.
I can calculate the length of an unknown side of a rectangle, given the perimeter and length of one side.
```


Key/New Words

Perimeter, calculate, properties, rectangle, square.

Resources
Lesson Pack

Preparation

Differentiated Calculate Perimeter Activity Sheets - one per child
Diving into Mastery Activity Sheets - as required

Prior Learning \quad It will be helpful if children can measure the perimeter of simple shapes, as covered in Measure Perimeter.
Learning Sequence
Remember It: Children calculate the perimeter of rectangles and squares shown on the Lesson Presentation.
They sort the shapes into those which have perimeters less than 16 cm and those with a perimeter 16 cm and

greater. | Different Units: The Lesson Presentation demonstrates how to calculate the perimeter of shapes where the |
| :--- |
| sides are not all written in the same unit of measurement. Children convert the measurements so that they |
| are all in the same unit, before calculating the perimeter. Can the children calculate the perimeter of shapes |
| where the sides are not all in the same unit of measurement? |

Diving into Mastery: Schools using a mastery approach may prefer to use the following as an alternative activity. These sheets might not necessarily be used in a linear way. Some children might begin at the 'Deeper' section and in fact, others may 'dive straight in' to the 'Deepest' section if they have already mastered the skill and are applying this to show their depth of understanding.

Children practise their fluency skills in calculating the perimeter of squares and rectangles and working out the length of missing sides.

Children use their reasoning skills to show their understanding of how to calculate the perimeter of squares and rectangles.

Children solve open-ended questions about the perimeter of squares and rectangles. They identify shapes which fit a set of clues about perimeter.

Exploreit

Drawit: Children draw squares and rectangles which have a perimeter of 36 cm .
Learnit: Children will find this superb, visually exciting Knowledge Organiser a useful tool to support their understanding of length and perimeter

Maths

Measurement

- To calculate the perimeter of simple shapes.

Success Criteria

- I can calculate the perimeter of shapes where the sides are not all in the same unit of measurement.
- I can use the properties of squares to calculate perimeter.
- I can use the properties of rectangles to calculate perimeter.
- I can calculate the length of an unknown side of a rectangle, given the perimeter and length of one side.

Sort these shapes by perimeter. Draw the table and write the letter of the shape in the correct column.

Perimeters Less than $\mathbf{1 6} \mathbf{c m}$		Perimeters $\mathbf{1 6} \mathbf{c m}$ or Greater	
A \quad E	B	C	D

We need to ensure all the sides are measured in the same unit of measurement.

One side is recorded in millimetres. Because the other sides are in centimetres, we need to convert this side to centimetres.

$$
20 \mathrm{~mm}=2 \mathrm{~cm}
$$

Now add together the lengths of the sides to calculate the perimeter:

$$
6 \mathrm{~cm}+2 \mathrm{~cm}+6 \mathrm{~cm}+2 \mathrm{~cm}
$$

How are you going to add the measurements?

Here's one way:

$$
\begin{aligned}
& 6 \mathrm{~cm}+2 \mathrm{~cm}=8 \mathrm{~cm} \\
& 6 \mathrm{~cm}+2 \mathrm{~cm}=8 \mathrm{~cm} \\
& 8 \mathrm{~cm}+8 \mathrm{~cm}=16 \mathrm{~cm}
\end{aligned}
$$

What do you know about all squares?

4 sides
Corners are right angles.
All sides are equal.

Which of these properties will help us when calculating the perimeter of squares?

All sides are equal.

Do we have enough information to calculate the area of this square?

Because all sides are equal, we know that the sides not labelled are also 5 cm .

So, the perimeter of this square $=5 \mathrm{~cm}+5 \mathrm{~cm}+5 \mathrm{~cm}+5 \mathrm{~cm}=20 \mathrm{~cm}$

How could we use multiplication?
There are 4 sides each measuring 5 cm .

$$
5 \mathrm{~cm} \times 4=20 \mathrm{~cm}
$$

\qquad

Calculate the area of these squares.
Write a repeated addition calculation and a multiplication calculation.

What do you know about all rectangles?
4 sides
Corners are right angles.
Opposite sides are equal.

Which of these properties will help us when calculating the perimeter of rectangles?

Opposite sides are equal.

Regent Studies | www.regentstudies.com

Do we have enough information to calculate the area of this rectangle?

Because opposite sides are equal, we know the length of the unlabelled sides.

The long side is 5 cm , so the opposite side is also 5 cm .

The short side is 3 cm , so the opposite side is also 3 cm .

Now we have enough information to calculate the perimeter.

Add together the length of all sides to calculate the perimeter of these shapes:

4 cm	Perimeter $=$
$\stackrel{E}{\text { E }}$	$4 \mathrm{~cm}+3 \mathrm{~cm}+4 \mathrm{~cm}+3 \mathrm{~cm}=14 \mathrm{~cm}$ (You may have added the measurements in a different order)

We could use multiplication to record the calculations.

We have two sides measuring 3 cm and 2 sides measuring 5 cm :

```
3cm\times2+5cm\times2 = 6 cm + 10cm = 16 cm
```

Another way would be to add together the longer side and the shorter side and multiply this by 2.

```
5cm}+3\textrm{cm}\times2=8\textrm{cm}\times2=16\textrm{cm
```


Perimeter of Rectangles

Add together the length of all sides to calculate the perimeter of these shapes:

7 cm	$\underset{\sim}{E}$	Perimeter $=$	
		$7 \mathrm{~cm} \times 2+3 \mathrm{~cm} \times 2=14 \mathrm{~cm}+6 \mathrm{~cm}=20 \mathrm{~cm}$	
		$7 \mathrm{~cm}+3 \mathrm{~cm}$	$\times 2=20 \mathrm{~cm}$

The perimeter of this shape is 20 cm . The longer side measures 6 cm .
Do we have enough information to calculate the length of the shorter sides?

We know the longer side is 6 cm , so the opposite side is also 6 cm .

The perimeter of this shape is 20 cm . The longer side measures 6 cm .
Do we have enough information to calculate the length of the shorter sides?

Calculate the length of the shorter side on this rectangle.

$$
\text { Perimeter }=18 \mathrm{~cm}
$$

18			
7	$?$	$?$	$?$

$18 \mathrm{~cm}-14 \mathrm{~cm}=4 \mathrm{~cm} \quad 4 \mathrm{~cm} \div 2=2 \mathrm{~cm}$
The shorter side measures 2 cm .

Dive in by completing your own activity!

- To calculate the perimeter of simple shapes.

Success Criteria

- I can calculate the perimeter of shapes where the sides are not all in the same unit of measurement.
- I can use the properties of squares to calculate perimeter.
- I can use the properties of rectangles to calculate perimeter.
- I can calculate the length of an unknown side of a rectangle, given the perimeter and length of one side.

Calculate Perimeter

To calculate the perimeter of simple shapes.

1) Use what you know about squares to calculate the perimeter. An example is given.

3 cm	Using addition: $3 \mathrm{~cm}+3 \mathrm{~cm}+3 \mathrm{~cm}+3 \mathrm{~cm}=12 \mathrm{~cm}$	Shapes not all drawn to the same scale
	Using multiplication: $3 \mathrm{~cm} \times 4=12 \mathrm{~cm}$	

a)

Using addition:

Using multiplication:

b)

c) 5 cm

Using addition:

Using multiplication:

Using addition:

Using multiplication:

2) Use what you know about rectangles to calculate the perimeter. An example is given.

4 cm	Using addition:$4 \mathrm{~cm}+4 \mathrm{~cm}+2 \mathrm{~cm}+2 \mathrm{~cm}=12 \mathrm{~cm}$			
E				
	Using multiplication:			
Opposite sides are equal.	$4 \mathrm{~cm} \times 2$	+	$2 \mathrm{~cm} \times 2$	
	8 cm	+	4 cm	$=12 \mathrm{~cm}$

a)
Using addition:

Using multiplication:

b)

Using addition:

Using multiplication:

c)

Using addition:
7 cm

Calculate Perimeter

To calculate the perimeter of simple shapes.

1) Use what you know about squares to calculate the perimeter. Write both an addition calculation and a multiplication calculation. An example is given.

5 cm	Using addition:$5 \mathrm{~cm}+5 \mathrm{~cm}+5 \mathrm{~cm}+5 \mathrm{~cm}=20 \mathrm{~cm}$	Shapes not all drawn to the same scale
	Using multiplication:	
	$5 \mathrm{~cm} \times 4=20 \mathrm{~cm}$	

a)

\square
b)

2) Use what you know about rectangles to calculate the perimeter. An example is given.

a)

5 cm

b)

3) Work out the length of the shorter side. The perimeter and the longer side has been given.

An example is given.

b)

Calculate Perimeter

To calculate the perimeter of simple shapes.

1) Use what you know about squares to calculate the perimeter. Show your working out. Use an addition calculation in one question and a multiplication calculation in the other.

Shapes not all drawn to the same scale
a)

Perimeter $=$

b)

2) Use what you know about rectangles to calculate the perimeter. Show your working out.
a)

Perimeter $=$
b)

Perimeter $=$
3) Work out the length of the shorter side. The perimeter and the longer side has been given. Show your working out.
a)

b)

c)

15 cm

Calculate Perimeter Answers

1)

a) Using addition:
$4 \mathrm{~cm}+4 \mathrm{~cm}+4 \mathrm{~cm}+4 \mathrm{~cm}=16 \mathrm{~cm}$
Using multiplication:
$4 \mathrm{~cm} \times 4=16 \mathrm{~cm}$
b) Using addition:
$2 m+2 m+2 m+2 m=8 m$
Using multiplication:
$2 m \times 4=8 m$
c) Using addition:
$5 \mathrm{~cm}+5 \mathrm{~cm}+5 \mathrm{~cm}+5 \mathrm{~cm}=20 \mathrm{~cm}$
Using multiplication:
$5 \mathrm{~cm} \times 4=20 \mathrm{~cm}$
2)
a) Using addition:
$3 \mathrm{~cm}+3 \mathrm{~cm}+2 \mathrm{~cm}+2 \mathrm{~cm}=10 \mathrm{~cm}$
Using multiplication:
$3 \mathrm{~cm} \times 2$

$$
2 \mathrm{~cm} \times 2
$$

$6 \mathrm{~cm}+4 \mathrm{~cm}=10 \mathrm{~cm}$
b) Using addition:
$4 \mathrm{~cm}+4 \mathrm{~cm}+3 \mathrm{~cm}+3 \mathrm{~cm}=14 \mathrm{~m}$
Using multiplication:

$4 \mathrm{~cm} \times 2$	$3 \mathrm{~cm} \times 2$
8 cm	$+\quad 6 \mathrm{~cm}=14 \mathrm{~cm}$

c) Using addition:
$7 \mathrm{~cm}+7 \mathrm{~cm}+5 \mathrm{~cm}+5 \mathrm{~cm}=24 \mathrm{~cm}$
Using multiplication:
$7 \mathrm{~cm} \times 2$
$5 \mathrm{~cm} \times 2$
14 cm
$+10 \mathrm{~cm}=24 \mathrm{~cm}$

Calculate Perimeter Answers

1)

a) Using addition:
$4 \mathrm{~cm}+4 \mathrm{~cm}+4 \mathrm{~cm}+4 \mathrm{~cm}=16 \mathrm{~cm}$
Using multiplication:
$4 \mathrm{~cm} \times 4=16 \mathrm{~cm}$
b) Using addition:
$6 m+6 m+6 m+6 m=24 m$
Using multiplication:
$6 \mathrm{~m} \times 4=24 \mathrm{~m}$
2)
a) Using addition:
$5 \mathrm{~cm}+5 \mathrm{~cm}+2 \mathrm{~cm}+2 \mathrm{~cm}=14 \mathrm{~cm}$
Using multiplication:

$$
5 \mathrm{~cm} \times 2
$$

$2 \mathrm{~cm} \times 2$
$10 \mathrm{~cm}+4 \mathrm{~cm}=14 \mathrm{~cm}$
b) Using addition:
$6 \mathrm{~cm}+6 \mathrm{~cm}+3 \mathrm{~cm}+3 \mathrm{~cm}=18 \mathrm{~m}$
Using multiplication:

$6 \mathrm{~cm} \times 2$	$3 \mathrm{~cm} \times 2$
12 cm	$+\quad 6 \mathrm{~cm}=18 \mathrm{~cm}$

3)

a) $6 \mathrm{~cm}+6 \mathrm{~cm}+?+?=20 \mathrm{~cm}$

$$
12 \mathrm{~cm}
$$

$$
20 \mathrm{~cm}-12 \mathrm{~cm}=8 \mathrm{~cm} \quad 8 \mathrm{~cm} \div 2=4 \mathrm{~cm}
$$

The shorter side is 4 cm
b) $5 \mathrm{~cm}+5 \mathrm{~cm}+?+?=16 \mathrm{~cm}$

10 cm
$16 \mathrm{~cm}-10 \mathrm{~cm}=6 \mathrm{~cm} \quad 6 \mathrm{~cm} \div 2=3 \mathrm{~cm}$
The shorter side is 3 cm

Calculate Perimeter Answers

1)

a) 12 cm
b) $\mathbf{2 4 m}$
2)
a) 18 cm
b) 28 m
3)
a) 4 cm
b) 6 m
c) 4 cm

1) a) 12 cm
b) 16 m

2) a) 14 cm
b) 14 m
3) 5 cm
4) 4 cm
5) Jade is wrong. As we know that the sides of a square are equal, we only need to know the measurement of one side.
$3 \mathrm{~cm} \times 4=12 \mathrm{~cm}$
6) Leo has added together the length and width of the rectangle. To calculate the correct answer he would need to add together $2 \times$ length and $2 \times$ width. Another way would be to add together the length and the width and multiply this by 2 . The perimeter is 20 cm .
7) Perimeter of rectangle $=$
$10 \mathrm{~cm}+10 \mathrm{~cm}+8 \mathrm{~cm}+8 \mathrm{~cm}=36 \mathrm{~cm}$
Side of square $\mathbf{- 3 6} \mathrm{cm} \div 4=9 \mathrm{~cm}$
8)

\boldsymbol{a}	\mathbf{b}
8 cm	1 cm
7 cm	2 cm
6 cm	3 cm
5 cm	4 cm

2) $5 \mathrm{~cm}, 7 \mathrm{~cm}, 9 \mathrm{~cm}, 11 \mathrm{~cm}$ and 13 cm
3)

a)

b)

c)
d)

8 cm
Perimeter $=22 \mathrm{~cm}$

1) Calculate the perimeter of these squares:
a)

b)

\square
\square
2) Calculate the perimeter of these rectangles:

3) What is the length of each side of this square?

4) What is the length of the shorter sides of this rectangle?

\square
5) Do you agree with Jade? Explain your answer.

6) Leo has calculated the perimeter of this shape. Explain the mistake he has made and how he should calculate the perimeter.

7) The perimeter of the square is the same as the perimeter of the rectangle. What is the length of the sides of the square? Show how you worked out the answer.

8) The perimeter of a rectangle is 18 cm .

The lengths are all whole numbers. What could the lengths of the sides a (longer side) and b (shorter side) be? Find all possibilities.

2) A square has a perimeter greater than 18 cm and less than 60 cm . The sides of the square are an odd number of centimetres. What could be the length of the sides of the square. Find all possibilities.

?

3) Here are some clues about a rectangle:

- The difference between the longer and shorter side is 3 cm
- The perimeter is greater than 20 cm
- The perimeter is less than 40 cm

Which of these shapes could the rectangle be?
a)

c)

d)

10 cm

Shapes not drawn to scale.

1) Calculate the perimeter of these squares:
a)

b)

2) Calculate the perimeter of these rectangles:

b)

3) What is the length of each side of this square?

$$
\text { Perimeter }=20 \mathrm{~cm}
$$

4) What is the length of the shorter sides of this 10 cm rectangle?

5) Calculate the perimeter of these squares:
a)

3 cm

ㄴ․․
b)

2) Calculate the perimeter of these rectangles:
a)

5 cm

b)

3) What is the length of each side of this square?

Perimeter $=20 \mathrm{~cm}$
4) What is the length of the shorter sides of this 10 cm rectangle?

1) Do you agree with Jade? Explain your answer.

2) Leo has calculated the perimeter of this shape. Explain the mistake he has made and how he should calculate the perimeter.

3) The perimeter of the square is the same as the perimeter of the rectangle. What is the length of the sides of the square? Show how you worked out the answer.

10 cm

1) Do you agree with Jade? Explain your answer.

2) Leo has calculated the perimeter of this shape. Explain the mistake he has made and how he should calculate the perimeter.

3) The perimeter of the square is the same as the perimeter of the rectangle. What is the length of the sides of the square? Show how you worked out the answer.

10 cm

1) The perimeter of a rectangle is 18 cm . The lengths are all whole numbers. What could the lengths of the sides a (longer side) and b (shorter side) be? Find all possibilities.

2) A square has a perimeter greater than 18 cm and less than 60 cm . The sides of the square are an odd number of centimetres. What could be the length of the sides of the square. Find all possibilities.

?

3) Here are some clues about a rectangle:

- The difference between the longer and shorter side is 3 cm
- The perimeter is greater than 20 cm
- The perimeter is less than 40 cm

Which of these shapes could the rectangle be?

Shapes not drawn to scale.

1) The perimeter of a rectangle is 18 cm . The lengths are all whole numbers. What could the lengths of the sides a (longer side) and b (shorter side) be? Find all possibilities.

2) A square has a perimeter greater than 18 cm and less than 60 cm . The sides of the square are an odd number of centimetres. What could be the length of the sides of the square. Find all possibilities.

3) Here are some clues about a rectangle:

- The difference between the longer and shorter side is 3 cm
- The perimeter is greater than 20 cm
- The perimeter is less than 40 cm

Which of these shapes could the rectangle be?

1) a) 12 cm
b) 16 m

2) a) 14 cm
b) 14 m
3) 5 cm
4) 4 cm
5) Jade is wrong. As we know that the sides of a square are equal, we only need to know the measurement of one side.
$3 \mathrm{~cm} \times 4=12 \mathrm{~cm}$
6) Leo has added together the length and width of the rectangle. To calculate the correct answer he would need to add together $2 \times$ length and $2 \times$ width. Another way would be to add together the length and the width and multiply this by 2 . The perimeter is 20 cm .
7) Perimeter of rectangle $=$
$10 \mathrm{~cm}+10 \mathrm{~cm}+8 \mathrm{~cm}+8 \mathrm{~cm}=36 \mathrm{~cm}$
Side of square $\mathbf{- 3 6} \mathrm{cm} \div 4=9 \mathrm{~cm}$
8)

\boldsymbol{a}	\mathbf{b}
8 cm	1 cm
7 cm	2 cm
6 cm	3 cm
5 cm	4 cm

2) $5 \mathrm{~cm}, 7 \mathrm{~cm}, 9 \mathrm{~cm}, 11 \mathrm{~cm}$ and 13 cm
3)

a)

b)

c)
d)

8 cm
Perimeter $=22 \mathrm{~cm}$

1) Calculate the perimeter of these squares:
a)

b)

\square
\square
2) Calculate the perimeter of these rectangles:

3) What is the length of each side of this square?

4) What is the length of the shorter sides of this rectangle?

\square
5) Do you agree with Jade? Explain your answer.

6) Leo has calculated the perimeter of this shape. Explain the mistake he has made and how he should calculate the perimeter.

7) The perimeter of the square is the same as the perimeter of the rectangle. What is the length of the sides of the square? Show how you worked out the answer.

8) The perimeter of a rectangle is 18 cm .

The lengths are all whole numbers. What could the lengths of the sides a (longer side) and b (shorter side) be? Find all possibilities.

2) A square has a perimeter greater than 18 cm and less than 60 cm . The sides of the square are an odd number of centimetres. What could be the length of the sides of the square. Find all possibilities.

?

3) Here are some clues about a rectangle:

- The difference between the longer and shorter side is 3 cm
- The perimeter is greater than 20 cm
- The perimeter is less than 40 cm

Which of these shapes could the rectangle be?
a)

c)

d)

10 cm

Shapes not drawn to scale.

1) Calculate the perimeter of these squares:
a)

b)

2) Calculate the perimeter of these rectangles:

b)

3) What is the length of each side of this square?

$$
\text { Perimeter }=20 \mathrm{~cm}
$$

4) What is the length of the shorter sides of this 10 cm rectangle?

5) Calculate the perimeter of these squares:
a)

3 cm

(-0.0)
b)

2) Calculate the perimeter of these rectangles:
a)

5 cm

b)

3) What is the length of each side of this square?

Perimeter $=20 \mathrm{~cm}$
4) What is the length of the shorter sides of this 10 cm rectangle?

1) Do you agree with Jade? Explain your answer.

2) Leo has calculated the perimeter of this shape. Explain the mistake he has made and how he should calculate the perimeter.

3) The perimeter of the square is the same as the perimeter of the rectangle. What is the length of the sides of the square? Show how you worked out the answer.

10 cm

1) Do you agree with Jade? Explain your answer.

2) Leo has calculated the perimeter of this shape. Explain the mistake he has made and how he should calculate the perimeter.

3) The perimeter of the square is the same as the perimeter of the rectangle. What is the length of the sides of the square? Show how you worked out the answer.

10 cm

1) The perimeter of a rectangle is 18 cm The lengths are all whole numbers. What could the lengths of the sides a (longer side) and b (shorter side) be? Find all possibilities.

2) A square has a perimeter greater than 18 cm and less than 60 cm . The sides of the square are an odd number of centimetres. What could be the length of the sides of the square. Find all possibilities.

?

3) Here are some clues about a rectangle:

- The difference between the longer and shorter side is 3 cm
- The perimeter is greater than 20 cm
- The perimeter is less than 40 cm

Which of these shapes could the rectangle be?

Shapes not drawn to scale.

1) The perimeter of a rectangle is 18 cm . The lengths are all whole numbers. What could the lengths of the sides a (longer side) and b (shorter side) be? Find all possibilities.

2) A square has a perimeter greater than 18 cm and less than 60 cm . The sides of the square are an odd number of centimetres. What could be the length of the sides of the square. Find all possibilities.

3) Here are some clues about a rectangle:

- The difference between the longer and shorter side is 3 cm
- The perimeter is greater than 20 cm
- The perimeter is less than 40 cm

Which of these shapes could the rectangle be?

Measurement | Calculate Perimeter

To calculate the perimeter of simple shapes.		
I can calculate the perimeter of shapes where the sides are not all in the same unit of measurement.		
I can use the properties of squares to calculate perimeter.		
I can use the properties of rectangles to calculate perimeter.		
I can calculate the length of an unknown side of a rectangle, given the perimeter and length of one side.		

Measurement | Calculate Perimeter

To calculate the perimeter of simple shapes.		
I can calculate the perimeter of shapes where the sides are not all in the same unit of measurement.		
I can use the properties of squares to calculate perimeter.		
I can use the properties of rectangles to calculate perimeter.		
I can calculate the length of an unknown side of a rectangle, given the perimeter and length of one side.		

Measurement | Calculate Perimeter

To calculate the perimeter of simple shapes.		
I can calculate the perimeter of shapes where the sides are not all in the same unit of measurement.		
I can use the properties of squares to calculate perimeter.		
I can use the properties of rectangles to calculate perimeter.		
I can calculate the length of an unknown side of a rectangle, given the perimeter and length of one side.		

Measurement | Calculate Perimeter

To calculate the perimeter of simple shapes.		
I can calculate the perimeter of shapes where the sides are not all in the same unit of measurement.		
I can use the properties of squares to calculate perimeter.		
I can use the properties of rectangles to calculate perimeter.		
I can calculate the length of an unknown side of a rectangle, given the perimeter and length of one side.		

Measurement | Calculate Perimeter
To calculate the perimeter of simple shapes.
I can calculate the perimeter of shapes where the sides are not all in the same unit of measurement.

I can use the properties of squares to calculate perimeter.

I can use the properties of rectangles to calculate perimeter.

I can calculate the length of an unknown side of a rectangle, given the perimeter and length of one side.

Measurement | Calculate Perimeter

To calculate the perimeter of simple shapes.		
I can calculate the perimeter of shapes where the sides are not all in the same unit of measurement.		
I can use the properties of squares to calculate perimeter.		
I can use the properties of rectangles to calculate perimeter.		
I can calculate the length of an unknown side of a rectangle, given the perimeter and length of one side.		

Measurement | Calculate Perimeter

To calculate the perimeter of simple shapes.		
I can calculate the perimeter of shapes where the sides are not all in the same unit of measurement.		
I can use the properties of squares to calculate perimeter.		
I can use the properties of rectangles to calculate perimeter.		
I can calculate the length of an unknown side of a rectangle, given the perimeter and length of one side.		

Measurement | Calculate Perimeter

To calculate the perimeter of simple shapes.		
I can calculate the perimeter of shapes where the sides are not all in the same unit of measurement.		
I can use the properties of squares to calculate perimeter.		
I can use the properties of rectangles to calculate perimeter.		
I can calculate the length of an unknown side of a rectangle, given the perimeter and length of one side.		

